
Guillaume Beuf – 2007 QCD Summer School, July 11, 2007 – p. 1

Travelling waves and QCD saturation

Guillaume Beuf

CEA / DSM / SPhT



From BK to FKPP

Solutions of the FKPP equation

Back to BK

BK with running coupling

BK at NLL

Guillaume Beuf – 2007 QCD Summer School, July 11, 2007 – p. 2

Content
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Balitsky-Kovchegov equation

Balitsky (1996), Kovchegov (1999, 2000)

∂Y TY (x,y) = ᾱ

∫

d2z

2π

(x − y)2

(x − z)2(z − y)2
[TY (x, z)

+TY (z,y) − TY (x,y) − TY (x, z)TY (z,y)]

■ BFKL kernel ⇒ exponential growth of TY (x,y)

■ Nonlinear damping ⇒ saturation at TY (x,y) = 1
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1D-BK equation

■ Fourier transform x − y 7→ k and (x + y)/2 7→ q

■ Restriction to zero momentum transfert q = 0

■ Rotationnal invariance ⇒ T̃Y (k,q = 0) ≡ N(log(k2/Q2
0), Y )

∂Y N(L, Y ) = ᾱ
[

χLL(−∂L)N(L, Y ) − N2(L, Y )
]

With χLL(γ) = 2Ψ(1) − Ψ(γ) − Ψ(1 − γ).
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Mapping to FKPP

Munier, Peschanski (2003)

■ Diffusive approximation:
χLL(−∂L) ≃ χLL( 1

2 ) + 1
2χ′′

LL( 1
2 )

(

1
2 + ∂L

)2

■ Change of variables: t ∝ ᾱY , x = C1L + C2ᾱY , and
u(t, x) ∝ N(L, Y )

⇒ FKPP equation

∂tu(t, x) = ∂2
xu(t, x) + u(t, x) − u2(t, x)

Fisher (1937), Kolmogorov, Petrovsky, Piscounov (1937)
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Uniformly translating fronts

u(t, x) = φv(z) , with z ≡ x − vt

{

−v φ′
v(z) = φ′′

v(z) + φv(z) − φ2
v(z)

φv(−∞) = 1 and φv(+∞) = 0
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Uniformly translating fronts

Linear regime at large z:

φv(z) ∝ e−γz for z → ∞ where v = γ +
1

γ

First case: v ≥ 2
u(t,x)

x
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Uniformly translating fronts

Linear regime at large z:

φv(z) ∝ e−γz for z → ∞ where v = γ +
1

γ

Second case: v < 2
u(t,x)

x
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Uniformly translating fronts

Linear regime at large z:

φv(z) ∝ e−γz for z → ∞ where v = γ +
1

γ

Assumption: u(t, x) ≥ 0

⇒ v ≥ 2

v = v(γ) , for all γ > 0

vmin = v(1) = 2
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Generic initial condition

Local study in the linear regime at large z:
If v1 < v2

z

log u

v1

v2
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Generic initial condition

Local study in the linear regime at large z:
If v1 > v2
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log u
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Asymptotic front

Nonlinear damping ⇒ flat solution at small x.

For t → ∞, u(t, x) ∼
{

e−γ0z if γ0 < γc = 1

e−γcz if γ0 ≥ γc

(1)
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Convergence to the asymptotic front

Ansatz:

u(t, x) = tαG

(

ξ

tα

)

e−γcξ

ξ = x − vct + c(t)

for t → ∞, and ξ ≤ O(tα).
The FKPP equation gives then

α =
1

2
, ċ(t) =

β

t

0 = G′′(z) +
z

2
G′(z) + (β − 1

2
) G(z)

Boundary conditions:
■ G(z) bounded for z → ∞.
■ G(z) ∼ z for z → 0 (nonlinearities).
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Solution of the FKPP equation

For t → ∞, and O(1) ≤ ξ ≤ O(
√

t):

u(t, x) = A ξ e−
ξ2

4t e−ξ

ξ = x − 2t +
3

2
log t

For ξ ≫
√

t: initial condition still relevant.
For ξ ≤ O(1): nonlinear term relevant.
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Universality

For an FKPP-like equation with
■ an unstable homogeneous equilibrium state
■ a family of uniformly translating front solutions
■ an effective nonlinear damping
■ a steep enough initial condition
⇒ Universal traveling wave asymptotic solution, independant
of the precise form of
■ the nonlinearities
■ the initial condition
Bramson (1983), Brunet, Derrida (1997), Ebert, van Saarloos (2000)
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BK critical parameters

Solution in the linear regime:

N(L, Y ) =

∫

dγ

2πi
e−γL+ᾱχLL(γ)Y N0(γ)

Dispersion relation:

v = ᾱ
χLL(γ)

γ

Critical parameters:

χLL(γc) = γc χ′
LL(γc) ⇒ γc = 0.6275...

vc = ᾱ
χLL(γc)

γc

Initial condition:

Color transparency ⇒ N(L, Y ) ∝ e−L for L → ∞
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Asymptotic solution of BK

Mueller, Triantafyllopoulos (2002), Munier, Peschanski (2003)
Universal asymptotic solution:

N(L, Y ) = A ξ e
− ξ2

2ᾱχ′′

LL
(γc)Y e−γcξ

ξ = L − ᾱ
χLL(γc)

γc
Y +

3

2γc
log Y ,

for Y → ∞, and ξ ≤ O(
√

Y ).

⇒ Geometric scaling in τ = eξ = k2

Q2
0

e−ᾱ
χLL(γc)

γc
Y Y

3
2γc ,

and scaling violations if ξ ≥ O(
√

Y ).
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A BK equation with running coupling

Choice: let us take ᾱ at the scale kT of the parent dipole.

ᾱ(k2
T ) =

1

b log(k2
T /Λ2)

=
1

b L

bL ∂Y N(L, Y ) = χLL(−∂L)N(L, Y ) − N2(L, Y )
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Approximate linear solution

N(L, Y ) =

∫

dγ

2πi

∫

dω

2πi
e−γL+ωY + 1

bω
X(γ) N0(γ, ω)

with X(γ) =

∫ γ

γ̂

dγ′ χLL(γ′)

is an approximate solution of the linear equation at large L,
because the large L saddle point equation is

L =
1

bω
χLL(γ)
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Dispersion relation

N(L, Y ) =

∫

dγ

2πi

∫

dω

2πi
e−γL+ωY + 1

bω
X(γ) N0(γ, ω)

At large Y , the saddle point approximation in ω gives

ωs =

√

X(γ)

bY

N(L, Y ) ∼
∫

dγ

2πi
e−γL+

q

4X(γ)
b

√
Y N0(γ)

⇒ dispersion relation at large Y and L:

v(γ) =
1

γ

√

4X(γ)

b

The effective time for the wave is
√

Y and not Y .
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Critical parameters

v(γ) =
1

γ

√

4X(γ)

b

X(γ) =

∫ γ

γ̂

dγ′ χLL(γ′)

vc = min v(γ) = v(γc) depend on γ̂. Let us choose γ̂ such that

dvc(γ̂)

dγ̂
= 0

⇒ Critical parameters:

χLL(γc) = γc χ′
LL(γc) γc ≃ 0.6275

vc =

√

2χLL(γc)

bγc
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Resolution

Expansion of the kernel around γ ∼ γc

bL

2
√

Y
∂√

Y N =

[

−bv2
c

2
∂L +

1

2
χ′′

LL(γc)(∂
2
L + 2γc ∂L + γ2

c ) + . . .

]

N

Then, using the same Ansatz:

N(L, Y ) = A Y 1/6 Ai

0

@ξ̄1 +

 
p

2bγcχLL(γc)

χ′′
LL(γc)

!1/3
ξ

Y 1/6

1

A e−γcξ

ξ ≡ log

„

k2

Q2
s(Y )

«

= L −

s

2χLL(γc)Y

bγc
− 3ξ̄1

4

 

χ′′
LL(γc)

p

2bγcχLL(γc)

! 1
3

Y
1
6 +O(Y − 1

6 )
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BK at NLL

General form:

∂Y N(L, Y ) = ᾱ [χLL(−∂L) + ᾱχNLL(−∂L)] N(L, Y )

−ᾱ
[

N2(L, Y ) + ᾱ (NLL nonlinear terms)
]

+ᾱ2 (New terms ?)

Collecting the running coupling terms:

∂Y N(L, Y ) = ᾱ(L)
[

χLL(−∂L) + ᾱ(L)χ(1)(−∂L)
]

N(L, Y )

−ᾱ(L) (Nonlinear terms)

+ᾱ2(L) (New terms ?)
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Effective linear equation

Linear part of the NLL equation:

∂Y N(L, Y ) =
1

bL

[

χLL(−∂L) +
1

bL
χ(1)(−∂L)

]

N(L, Y )

Is it equivalent to an effective equation

∂Y N(L, Y ) =
1

bL
κ(−∂L, ∂Y )N(L, Y ) ?

Ciafaloni, Colferai (1998)
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Effective linear equation

In Laplace (or Mellin) space:

−∂L → γ and ∂Y → ω

ω =
1

bL

[

χLL(γ) +
1

bL
χ(1)(γ)

]

ω =
1

bL
κ(γ, ω)

They are equivalent if

κ(γ, ω) = χLL(γ) +
ω χ(1)(γ)

κ(γ, ω)
.
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Omega expansion

Effective kernel:

κ(γ, ω) = χLL(γ)
1

2

[

1 +

√

1 +
4ω χ(1)(γ)

χ2
LL(γ)

]

≃ χLL(γ)

[

1 +
ω χ(1)(γ)

χ2
LL(γ)

−
(

ω χ(1)(γ)

χ2
LL(γ)

)2

+ . . .

]

The effective equation can be trusted if

ω χ(1)(γ)

χ2
LL(γ)

≪ 1
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Omega expansion

The LL and NLL kernel eigenfunctions have singularities in
γ → 0 (or 1 − γ → 0)

χLL(γ) ∝ γ−1 (or(1 − γ)−1)

χ(1)(γ) ∝ γ−3 (or(1 − γ)−3)

ω χ(1)(γ)

χ2
LL(γ)

∝ ω

γ

(

or
ω

1 − γ

)

⇒ The effective equation is valid if ω ≪ γ, 1 − γ
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Approximate linear solution

N(L, Y ) =

∫

dγ

2πi

∫

dω

2πi
e−γL+ωY + 1

bω
X(γ,ω) N0(γ, ω)

with X(γ, ω) =

∫ γ

γ̂

dγ′ κ(γ′, ω)

is an approximate solution of the linear equation at large L,
because the large L saddle point equation is

L =
1

bω
κ(γ, ω)

which is equivalent to

ω =
1

bL

[

χLL(γ) +
1

bL
χ(1)(γ)

]

if ω ≪ γ, 1 − γ .
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Large Y saddle point

N(L, Y ) =

∫

dγ

2πi

∫

dω

2πi
e−γL+ωY + 1

bω
X(γ,ω) N0(γ, ω)

At large Y , the saddle point approximation in ω gives

Y bω2
s = X(γ, ωs) − ωs Ẋ(γ, ωs)

=

∫ γ

γ̂

dγ′χLL(γ′)

[

1 +

(

ωs χ(1)(γ)

χ2
LL(γ)

)2

−4

(

ωs χ(1)(γ)

χ2
LL(γ)

)3

+ . . .

]
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Critical parameters

If γ → 0:

Y bω2
s = log γ + constant − 1

2

(

Cωs

γ

)2

+
4

3

(

Cωs

γ

)3

+ . . .

For large Y , ωs ∝ Y −1/2, and the higher orders are suppressed
if ωs ≪ γ , 1 − γ.

⇒ same γc and vc as in the simplest equation with running
coupling. And the convergence can start when

Y > γ−2
c , (1 − γc)

−2
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Expansion of the effective equation

Expanding the effective kernel around γ ∼ γc and ω ∼ 0:

bL

2
√

Y
∂√

Y N =

„

− bv2
c

2
∂L +

1

2
χ′′

LL(γc)(∂
2
L + 2γc ∂L + γ2

c ) + . . .

+
1

2
√

Y

χ(1)(γc)

χLL(γc)
∂√

Y − 1

2
√

Y

 

∂γ
χ(1)(γ)

χLL(γ)

!

γ=γc

(γc + ∂L) ∂√
Y

+ . . .

«

N

The new terms, of order Y −1/2 doesn’t contribute to the universal
subasymptotic behavior.
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Result at NLL

At large enough rapidity (Y −1/2 ≪ 1), the solution of the full
NLL BK equation in the geometric scaling region converge to
the solution of the LL BK equation with running coupling. Then,
they converge to their asymptotic solution.

N(L, Y ) = A Y 1/6 Ai

0

@ξ̄1 +

 
p

2bγcχLL(γc)

χ′′
LL(γc)

!1/3
ξ

Y 1/6

1

A e−γcξ

ξ ≡ log

„

k2

Q2
s(Y )

«

= L −

s

2χLL(γc)Y

bγc
− 3ξ̄1

4

 

χ′′
LL(γc)

p

2bγcχLL(γc)

! 1
3

Y
1
6
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